
17 Source Problems for Heat and Wave IB-

VPs

We have mostly dealt with homogeneous equations, homogeneous b.c.s in this
course so far. Recall that if we have non-homogeneous b.c.s, then we want to
first make a transformation of the problem to one that has homogeneous b.c.s
since we can only solve the EVP arising from separation-of-variables method
if the b.c.s are homogeneous. The transformation may lead to a new problem
with homogeneous b.c.s but with a non-homogeneous equation. Of course,
there are modeling cases where the equation is naturally non-homogeneous
for physical reasons, like the presence of sources or sinks. So now we have to
discuss that possibility.

First consider the case where the non-homogeneous term sends on x only:
ut = uxx + F (x) 0 < x < 1 , t > 0

u(0, t) = 0 = u(1, t) t > 0

u(x, 0) = f(x) 0 < x < 1

(1)

Note that a steady state solution to this problem, u(x, t) = U(x), would
be the solution to

0 =
d2U

dx2
+ F (x)

0 = U(0) = U(1)

Therefore, by integrating twice, the solution to this boundary-value problem
(BVP) is

U(x) = x

∫ 1

0

∫ y

0

F (z)dzdy −
∫ x

0

∫ y

0

F (z)dzdy .

Exercise: Show this.

Hence, if we write the solution to problem (1) as u(x, t) = U(x) +w(x, t),
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then w(x, t) satisfies the problem
wt = wxx 0 < x < 1 , t > 0

w(0, t) = 0 = w(1, t) t > 0

w(x, 0) = f ∗(x) := f(x)− U(x) 0 < x < 1

(2)

which we solve by the usual separation-of-variables method.
To summarize, if you have a problem with non-homogeneous boundary

conditions, transform it to one with homogeneous boundary conditions. This
may or may not lead to an equation that is non-homogeneous. If there is
a non-homogeneous term, and it is just a function of the space variable (x
in the 1D case, of vector x in the multidimensional case), then look for the
steady-state solution. After that obtain the homogeneous problem as we did
in the example above, and proceed to derive the eigenfunction expansion of
the solution to the homogeneous problem.

For the more general problem of a diffusion or wave equation problem
with a non-homogeneous term depending on both x and t, we just modify
our usual procedure a bit.

Example: Consider
ut = uxx + F (x, t) 0 < x < 1 , t > 0

u(0, t) = 0 = u(1, t) t > 0

u(x, 0) = g(x) 0 < x < 1

For each t > 0, we consider F to be piecewise smooth function in x. For
whatever b.c.s are imposed, in this example the Dirichlet b.c.s, consider the
analogous homogeneous equation with the same b.c.s, and proceed to solve
the EVP. (For this example we know the eigenvalues and associated eigen-
functions are given by λn = n2π2, and φn(x) = sin(nπx), n ≥ 1). Now do
not solve the T(t)-equation, but instead write the more general eigenfunction
expansion (coefficients being functions of t to be determined), that is

u(x, t) =
∞∑
n=1

bn(t) sin(nπx) with F (x, t) =
∞∑
n=1

fn(t) sin(nπx) (3)
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Now substitute these series into the original equation:

∞∑
n=1

dbn
dt

sin(nπx) = −
∞∑
n=1

n2π2bn sin(nπx) +
∞∑
n=1

fn(t) sin(nπx) ,

or
∞∑
n=1

{dbn
dt

+ n2π2bn} sin(nπx) =
∞∑
n=1

fn(t) sin(nπx) .

Since Fourier series are unique for a given function, the coefficients must be
equal; this means in this case that dbn

dt
+ n2π2bn = fn(t). Also, by setting

t = 0, we have g(x) = u(x, 0) =
∑∞

n=1 bn(0) sin(nπx), that is, the bn(0)′s are
the Fourier sine coefficients for the function g(x). Therefore, if we write βn :=

2
∫ 1

0
g(x) sin(nπx)dx, then the problems we must solve for the coefficients for

u are

dbn
dt

+ n2π2bn = fn(t)

bn(0) = βn

Hence,

d

dt
(en

2π2tbn) = fn(t)en
2π2t ⇒ bn(t) = βne

−n2π2t +

∫ t

0

e−n
2π2(t−s)fn(s)ds .

Of course, we need to know the f ′ns. They are the Fourier coefficients of
F (x, t), and gotten in the usual way of multiplying the F (x, t) expansion in
(3) by an arbitrary eigenfunction, and integrating. Because of orthogonality,
we have

fn(t) = 2

∫ 1

0

F (x, t) sin(nπx)dx .

To summarize, given a problem for u(x, t) with a non-homogenous equation,
and homogeneous boundary conditions,

• Use separation-of-variables method on the homogenous equation and
boundary conditions to derive the EVP;

• Solve the EVP for the eigenvalues and eigenfunctions, and write the
general eigenfunction expansion for u and the forcing term (the non-
homogeneity function);
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• Substitute these expansions into the partial differential equation and
the initial conditions and solve the coefficient equations.

Example: Consider
ut = uxx + e−t sin(3x) 0 < x < π , t > 0

u(0, t) = 0 , u(π, t) = 1 t > 0

u(x, 0) = x/π 0 < x < 1

Since we have non-homogeneous b.c.s, we must deal with them. If we let
u(x, t) = x/π + v(x, t), then v must satisfy the problem

vt = vxx + e−t sin(3x) 0 < x < π , t > 0

v(0, t) = 0 = v(π, t) t > 0

v(x, 0) = 0 0 < x < 1

Now let v(x, t) = T (t)φ(x) and substitute into the homogeneous version of
the v equation. Then separating variables gives

d2φ
dx2

+ λφ = 0 0 < x < π

φ(0) = 0 = φ(π)

Hence, λ = λn = n2, φ = φn(x) = sin(nx), for n = 1, 2, . . .. Now we
write v(x, t) =

∑∞
n=1 bn(t) sin(nx), so 0 = v(x, 0) =

∑∞
n=1 bn(0) sin(nx). This

implies bn(0) = 0 for all n. With v(x, t) =
∑∞

n=1 bn(t) sin(nx) and F (x, t) =
e−t sin(3x) =

∑∞
n=1 fn(t) sin(nx), then

fn(t) =

{
e−t n = 3
0 n 6= 3

Finally, substituting the series into the equation gives

∞∑
n=1

{dbn
dt

+ n2bn} sin(nx) = e−t sin(3x) =
∞∑
n=1

fn(t) sin(nx) .
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So for n 6= 3 we have dbn
dt

+ n2bn = 0, bn(0) = 0, which implies bn(t) ≡ 0. For

n = 3, we have db3
dt

+ 9b3 = e−t, b3(0) = 0, so b3(t) = 1
8
(e−t− e−9t). This gives

v(x, t) = 1
8
(e−t − e−9t) sin(3x), so

u(x, t) = x/π +
1

8
(e−t − e−9t) sin(3x) .

Note: For the arbitrary initial condition u(x, 0) = f(x), v(x, 0) = f ∗(x) :=
f(x)−x/π, so f ∗(x) =

∑∞
n=1 bn(0) sin(nx), which gives bn(0) = 2

π

∫ π
0
f ∗(y) sin(ny)dy.

Then for n 6= 3, bn(t) = bn(0)e−n
2t, while b3(t) = b3(0)e−9t + 1

8
(e−t − e−9t).

Exercises: The next two problems are slight modifications of the above ex-
ample.

1. Solve the following problem, with m 6= 1,
vt = vxx + e−t sin(mx) 0 < x < π , t > 0

v(0, t) = 0 = v(π, t) t > 0

v(x, 0) = 0 0 < x < 1

and arrive at the solution v(x, t) = 1
m2−1(e−t − e−m2t) sin(mx) .

2. Show the solution for
vt = vxx + h(t) sin(mx) 0 < x < π , t > 0 h is continuous

v(0, t) = 0 = v(π, t) t > 0

v(x, 0) = f(x) 0 < x < 1

is v(x, t) =
∑∞

n=1 bn(t) sin(nx), where bn(0) := fn = 2
π

∫ π
0
f(y) sin(ny)dy,

for all n ≥ 1, bm(t) = fme
−m2t +

∫ t
0
e−m

2(t−τ)h(τ)dτ , and for n 6= m,

bn(t) = fne
−n2t.
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Let us re-emphasize the procedure on the following forced wave equation
problem. Consider

utt = uxx + xe−t 0 < x < 1 , t > 0

ux(0, t) = 0 = ux(1, t) t > 0

u(x, 0) = 0 = ut(x, 0) 0 < x < 1

1. Consider the homogeneous equation and b.c.s; separate variables and
find the EVP. In this case we have

d2φ
dx2

+ λφ = 0

dφ
dx

(0) = 0 = dφ
dx

(1)

Solve for the eigenvalues and eigenfunctions; in this case we have λn =
n2π2, n = 0, 1, 2, . . ., and φn(x) = cos(nπx). (Note, in this case, λ = 0
is an eigenvalue.)

2. Write u as a Fourier series in these eigenfunctions; thus

u(x, t) =
a0(t)

2
+
∞∑
n=1

an(t) cos(nπx);

3. Substitute this series into the non-homogeneous pde and represent the
non-homogeneous term by a similar series, that is

1

2
a′′0 +

∑
n≥1

{a′′n +n2π2an} cos(nπx) = xe−t =
1

2
f0(t) +

∑
n≥1

fn(t) cos(nπx)

4. Solve for the f ′ns, then write out equations for the a′ns:

f0(t) = e−t , fn(t) =
2[(−1)n − 1]

n2π2
e−t n ≥ 1

so a′′0 = f0(t) a′′n + n2π2an = fn(t) ;

5. Solve for the initial data; for this example it is simple:

a0(0)
2

+
∑

n≥1 an(0) cos(nπx) = f(x) ≡ 0⇒ an(0) = 0 for all n ≥ 0

a′0(0)

2
+
∑

n≥1 a
′
n(0) cos(nπx) = g(x) ≡ 0⇒ a′n(0) = 0 for all n ≥ 0 ;
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6. Solve the differential equations with initial conditions for the coeffi-
cients:

a′′0 = e−t , a0(0) = a′0(0) = 0 ⇒ a0(t) = e−t + t− 1

a′′n + n2π2an = 2[(−1)n−1]
n2π2 e−t , an(0) = a′n(0) = 0 ⇒

an(t) = C1 cos(nπt) + C2 sin(nπt) +
2[(−1)n − 1]e−t

n2π2(1 + n2π2)

=
2[(−1)n − 1]

n2π2(1 + n2π2)
{e−t +

sin(nπt)

nπ
− cos(nπt)}

=

{
0 if n = even

−4
n2π2(1+n2π2)

{e−t + sin(nπt)
nπ

− cos(nπt)} if n = odd

7. Now put is all together:

u(x, t) =
1

2
(e−t + t− 1)− 4

π2

∑
n=odd≥1

e−t + sin(nπt)
nπ

− cos(nπt)

n2(n2π2 + 1)
cos(nπx)

Summary: Review the summary paragraph on page 2, and really under-
stand the procedure outlined by the example on pages 6-7.

Exercises: Develop the eigenfunction series expansion representation for the
solution to the following problems:

1. Redo the problem on the top of page 6 with the boundary conditions
u(0, t) = 0 = u(1, t).

2. 
ut = uxx + e−5t sin(4x) 0 < x < π , t > 0
u(0, t) = 0 = u(π, t) t > 0
u(x, 0) = x(π − x) 0 < x < π

7



3. 
ut = uxx + 0.1e−t sin(πx

2
) 0 < x < 1 , t > 0

u(0, t) = 0 = ux(1, t) t > 0
u(x, 0) = 0 0 < x < 1

(Answer: u(x, t) = 2
5π2−20(e−t − e−π2t/4) sin(πx

2
).)
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